About Chemistry, Environment, Waste Management and Green Life Inspirations

28 May 2010

The Cynar Technology

Source : http://www.cynarplc.com/cynar_technology.asp#top

Current situation of recycling of plastics
Structure of the System
The system uses liquefaction, pyrolysis and distillation of plastics. The system can handle almost all the plastic that is currently being sent to landfills.
A major advantage of the process is its high efficiency. Each plant can produce up to 19k litres of fuel from 20 tonnes of waste plastic.

Current situation of recycling of plastics

Various methodologies have been tried and tested to process waste plastics for many years, with recycling becoming the most common method reflecting the needs of the time. Plastics that cannot be processed are handled by waste management companies by normal landfilling or incineration.
The building or expanding of incinerators has become difficult due to opposition from governments and community groups with environmental concerns, most notably the levels of emissions.
Liquefaction of plastic is a superior method of reusing this resource. These distillate products are excellent fuels and make the Cynar Technology one of the best, economically feasible and environmentally sensitive recycling systems in the world today.
The synthetic fuels produced, given their low sulphur and high cetane qualities, will most likely be blended into a larger pool for use in trucks, buses, trains, boats, heavy equipment and generators.


Pyrolysis is a process of thermal degradation in the absence of oxygen. Plastic waste is continuously treated in a cylindrical chamber and the pyrolytic gases condensed in a specially-designed condenser system to yield a hydrocarbon distillate comprising straight and branched chain aliphatics, cyclic aliphatics and aromatic hydrocarbons. The resulting mixture is
essentially equivalent to petroleum distillate. The plastic is pyrolised at 370ºC-420ºC and the pyrolysis gases are condensed in a 2-stage condenser to give a low sulphur content distillate.
The essential steps in the pyrolysis of plastics involves:
  1. evenly heating the plastic to a narrow temperature range without excessive temperature variations
  2. purging oxygen from pyrolysis chamber,
  3. managing the carbonaceous char by-product before it acts as a thermal insulator and lowers the heat transfer to the plastic
  4. careful condensation and fractionation of the pyrolysis vapours to produce distillate of good quality and consistency

Structure of the System

The system consists of stock infeed system, pyrolysis chambers, contactors, distillation, centrifuge, oil recovery line, off-gas cleaning, and residual contamination removal.
Waste plastics are loaded via a hot-melt infeed system directly into main pyrolysis chamber.
Agitation commences to even the temperature and homogenise the feedstocks. Pyrolysis then commences and the plastic becomes a vapour. Non-plastic materials fall to the bottom of the chamber.
The vapour is converted into the various fractions in the distillation column, the distillates then pass into the recovery tanks.
From the recovery tanks, the product is sent to a centrifuge to remove contaminants such as water or carbon.
The cleaned distillates are then pumped to the storage tanks.


The heart of the pyrolysis system is the prime chamber, which performs the essential functions of homogenisation, controlled decomposition and outgassing in a single process. The process requires minimal maintenance apart from carbon residue removal, and produces consistent quality distillate
from mixed and low-grade plastic waste.
The key to an efficient pyrolysis process is to ensure the plastic is heated uniformly and rapidly. If temperature gradients develop in the molten plastic mass then different degrees of cracking will occur and products with a wide distribution of chain lengths will be formed.
Another important aspect of pyrolysis is to use a negative pressure (or a partial vacuum) environment. This ensures that oxidation reactions are minimised and that gaseous pyrolysis vapours are quickly removed from the process chamber thereby reducing the incidence of secondary reactions and the formation of undesirable by-products.
The polymer is gently 'cracked' at relatively low temperatures to give predominantly straight chain aliphatic hydrocarbons with little formation of by-products. These hydrocarbons are then selectively condensed and cleaved further catalytically to produce the average carbon chain length required
for distillate fuel.

Vitamin C Determination by Iodine Titration

Vitamin C (ascorbic acid) is an antioxidant that is essential for human nutrition. Vitamin C deficiency can lead to a disease called scurvy, which is characterized by abnormalities in the bones and teeth. Many fruits and vegetables contain vitamin C, but cooking destroys the vitamin, so raw citrus fruits and their juices are the main source of ascorbic acid for most people.
One way to determine the amount of vitamin C in food is to use a redox titration. The redox reaction is better than an acid-base titration since there are additional acids in a juice, but few of them interfere with the oxidation of ascorbic acid by iodine.
Iodine is relatively insoluble, but this can be improved by complexing the iodine with iodide to form triiodide:
I2 + I- <--> I3-
Triiodide oxidizes vitamin C to form dehydroascorbic acid:
C6H8O6 + I3- + H2O --> C6H6O6 + 3I- + 2H+
As long as vitamin C is present in the solution, the triiodide is converted to the iodide ion very quickly. Howevever, when the all the vitamin C is oxidized, iodine and triiodide will be present, which react with starch to form a blue-black complex. The blue-black color is the endpoint of the titration.
This titration procedure is appropriate for testing the amount of vitamin C in vitamin C tablets, juices, and fresh, frozen, or packaged fruits and vegetables. The titration can be performed using just iodine solution and not iodate, but the iodate solution is more stable and gives a more accurate result.


Ulangan Kenaikan Kelas (Ulangan Akhir Semester 2) sudah di ambang pintu. Bagi kelas X sebentar lagi kenaikan kelas ke kelas XI serta penjurusan program, sedangkan bagi kelas XI kenaikan ke kelas XII.

Langkah terpenting untuk mempersiapkan diri dalam menempuh tes tersebut adalah dengan berlatih semaksimal mungkin. Bagi anda yang ingin mendapatkan paket soal untuk latihan, silahkan download di sini

 Daftar Siswa Yang Telah Mengirimkan Tugas Kimia (Koreksi mulai 28 Mei 2010)
No. Nama Siswa Kelas Nilai Tgl. Koreksi
1 Indri rahmawati X-1 A 28-05-2010
2 Hendri Eko D. X-5 A 28-05-2010
3 Siti Kuswatun X-6 A 28-05-2010
4 Siti Kuswatun X-6 A 28-05-2010
5 Siti Kuswatun X-6 A 28-05-2010
6 Baron Setyo Utomo X-2 A 28-05-2010
7 Ria Ariyanti X-4 A 28-05-2010
8 Ria Ariyanti X-4 A 28-05-2010
9 Nanda Agyu X-4 A 28-05-2010
10 Zidna Taubat X-5 A 28-05-2010
11 Zidna Taubat X-5 B+ 28-05-2010
12 Zidna Taubat X-5 A 28-05-2010

27 May 2010

A New Way to Turn Plastic Into Fuel?

Envion Envion, a Washington, D.C., start-up, aims to turn plastics into fuel — with minimal mess.
Entrepreneurs have been trying for years to turn low-value wastes into high-value products. Waste plastic is among the lowest in value, and gasoline or diesel fuel the highest, but machines that carry out that conversion usually consume a lot of energy and get gummed-up by leftover materialthat they cannot convert.
Now a company in Washington, D.C., is trying out a new way — heating the plastic to a very carefully controlled temperature range, with infrared energy.
The company, Envion, is expected to cut the ribbon on Wednesday morning on a $5 million plant that it says will annually convert 6,000 tons of plastic into nearly a million barrels of something resembling oil. The product can be blended with other components and sold as gasoline or diesel.
“We are the world’s largest oil consumer and the world’s biggest producer of waste,’’ said Michael Han, chairman and chief executive of the company.
This process will convert one to the other for about $10 a barrel, he said.
Montgomery County, just north of Washington, D.C., apparently agrees, at least to the extent that it is giving Mr. Han a free supply of plastic and a spot at its waste transfer station to set up shop.
Gov. Martin O’Malley of Maryland was scheduled to speak at a ceremonial opening on Wednesday.
A day earlier, Mr. Han pointed out bales of plastics waiting to be shredded and fed into his machine, including planters, McDonald’s large-sized beverage cups, margarine containers and other materials typical of what suburban residents put out in blue bins once a week for pick-up.
His machine can digest the blue bins, too, he said.
Indeed, the machine will take everything except PET (the bottle with the “1’’ on the bottom) because those have a higher value on the recycling market, he said.
He will process the caps, though.
(Nationwide, 50 million tons of plastic waste are generated annually, according to the company.)
The finished product looks like a slightly murky lemonade and smells somewhere between gasoline and diesel fuel. One company has already agreed to buy the material for blending into motor fuel, and Mr. Han said he is in discussion with others. Envion would like to license its technology for use around the world.
Mr. Han and other company officials were a little vague on some details, which they said were proprietary, but the plant essentially consists of a two-story-high chemical reactor with an internal agitator (for mixing up the soup) and heating elements that give off infrared energy.
Another trick is to limit the amount of oxygen.
Because the process is driven by electricity and not with an open flame, the temperature can be tightly controlled, so most of the material — about 82 percent, according to the company — becomes liquid fuel.
Company executives predicted that they would have to shut down to clean out leftover sludge two to four times a year (conventional processes get clogged much faster).
The sludge can be burned for energy too, but it has much lower value.
Production depends on the plastic used as feedstock, but each ton of waste will produce 3 to 5 barrels of product, according to Envion. Producing a barrel consumes between 59 and 98 kilowatt-hours — two or three days’ worth of electricity for a typical house. The price of electricity per gallon comes to 7 to 12 cents, the company says.
Todd Makurath, the director of global brand management at the company, said that because it was all electric, it could be monitored over the Web, with just two employees on site, one to use a front-end loader to dump shredded plastic into the intake hopper and another to “watch for red lights” on the alarm system.
“This could be transformational in how we handle plastics,’’ Mr. Makurath said.

26 May 2010

How to Make a Smoke Bomb

by Anne Marie Helmenstine
Smoke bombs are the easiest and safest do-it-yourself firework project. You only need two inexpensive, non-toxic ingredients and it only takes minutes to make. Watch and learn how you can cook up a smoke bomb at home.

Smoke bombs are easy and fun to make and light. There are several types of smoke bombs you can make, plus you can use the smoke bomb recipe as a starting point for other types of pyrotechnic devices. Try these recipes for making your own smoke bombs.

Classic Smoke Bomb - Video Tutorial

homemade smoke bomb is easy to make and only requires two ingredients.Anne Helmenstine
Smoke bombs are the easiest and safest do-it-yourself firework project. You only need two inexpensive, non-toxic ingredients and it only takes minutes to make up a batch of smoke bombs. Watch and learn how you can cook up a smoke bomb at home.

24 May 2010

Ilmuwan Jerman Simpan Surplus Energi Pembangkit Energi Terbarukan Dalam Bentuk Metan

Sumber : Planet Hijau

Setiap tahun pembangkit listrik yang memanfaatkan potensi energi terbarukan seperti surya dan angin bertambah dalam skala MegaWatt. Namun sayangnya hingga saat ini media penyimpan surplus energi yang dihasilkan oleh pembangkit listrik energi terbarukan masih belum menemukan kematangan teknologinya. Baterai hingga kini memang masih menjadi alternatif utama, namun harganya yang mahal dan keterbatasan siklus isi ulangnya merupakan kendala tersendiri yang kini masih dicarikan penyelesaiannya oleh para ilmuwan.

Beralih dari baterai, para peneliti di Jerman telah menemukan metode baru untuk menyimpan kelebihan produksi listrik dari pembangkit energi terbarukan. Jika selama ini gas dibakar untuk menghasilkan listrik, maka proses tersebut dibalik. Kelebihan energi listrik diubah menjadi gas alam sintetis.

Metode tersebut dikembangkan oleh Center for Solar Energy and Hydrogen Research (ZSW) di Baden-Württemberg, Jerman dan bekerja sama dengan Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) dan Solar Fuel Technology, sebuah perusahaan Austria yang bertanggung jawab dalam mempersiapkan implementasinya pada industri.

Proses yang digunakan untuk konversi masih mengandalkan elektrolisa dengan methanisasi, yaitu proses pencampuran antara hidrogen dan karbon dioksida. Hasil reaksi kimia yang terjadi adalah metan sintetis. Keuntungannya adalah gas metan yang dihasilkan bisa dicampur dengan gas alam dan kemudian disalurkan ke infrastruktur saluran pipa distribusi gas yang ada, tanpa perlu pembuatan infrastruktur terpisah.

Sebuah sistem untuk keperluan uji coba juga telah dibangun di fasilitas Solar Fuel Technology di Stuttgart dan berhasil beroperasi sesuai yang diharapkan. Rencananya sistem yang lebih besar akan dibangun dan menghasilkan daya hingga 10MW.

19 May 2010

Landfill (part 1): Unit Pengolahan Leachate dan biogas

Sumber : Majalah Majari

Gambar 2 Skema pengolahan sampah dengan landfill yang menghasilkan gas

Secara sepintas, metode landfill relatif mudah dilakukan dan bisa menampung sampah dalam jumlah besar. Akan tetapi, anggapan ini kurang tepat karena jika tidak dilakukan secara benar, landfill dapat menimbulkan masalah yang berkaitan dengan kesehatan dan lingkungan. Masalah utama yang sering timbul adalah bau dan pencemaran air lindi (leachate) yang dihasilkan. Selain itu, gas metana yang dihasilkan oleh landfill dan tidak dimanfaatkan akan menyebabkan efek pemanasan global. Jika termampatkan di dalam tanah, gas metana bisa meledak. Oleh sebab itu, dalam sistem landfill yang baik diperlukan adanya unit pengolahan air lindi dan unit pengolahan biogas.
Unit Pengolahan Air Lindi (leachate)
Air lindi merupakan air dengan konsentrasi kandungan organik yang tinggi yang terbentuk dalam landfill akibat adanya air hujan yang masuk ke dalam landfill. Air lindi merupakan cairan yang sangat berbahaya karena selain kandungan organiknya tinggi, juga dapat mengandung unsur logam (seperti Zn, Hg). Jika tidak ditangani dengan baik, air lindi dapat menyerap dalam tanah sekitar landfill kemudian dapat mencemari air tanah di sekitar landfill. Air lindi memerlukan perlakuan awal, yaitu dengan menghilangkan kandungan inorganik dalam air lindi. Setelah kandungan inorganik dalam air lindi dapat dihilangkan atau dikurangi, kemudian air lindi dapat diolah lebih lanjut untuk menghilangkan kadar kandungan organiknya.
Pengolahan air lindi dapat dilakukan dengan berbagai alternatif seperti :
Resirkulasi air lindi kembali ke dalam landfill. Hal ini dapat meningkatkan laju dekomposisi kandungan organik menjagi biogas hingga sekitar 70%. Resirkulasi air lindi dapat dilakukan pada musim kemarau, sedangkan pada musim hujan, air lindi harus diolah untuk mengurangi volumenya.
Pengolahan air lindi dengan menggunakan pengolahan limbah secara biologis. Pengolahan ini biasa dilakukan dengan menggunakan lumpur aktif yang berfungsi mendegradasi kandungan organik yang terdapat dalam air lindi. Setelah kandungan organik dalam air lindi turun drastis, kemudian dapat dilakukan pemurnian kembali dengan menggunakan alat filtrasi. Air keluaran yang diharapkan dari pengolahan semacam ini dapat langsung dibuang ke lingkungan karena tidak berbahaya bagi lingkungan.
Pengolahan air lindi dengan menggunakan pengolahan limbah secara kimiawi
Pengolahan air lindi dengan menggunakan membran. Selain untuk mengurangi kekeruhan atau turbiditas, pengolahan dengan membran dimaksudkan untuk mengurangi kadar COD, BOD serta kandungan logam pada air lindi. Umumnya diperlukan pengolahan bertahap untuk menghasilkan limbah yang memenuhi syarat baku mutu limbah seperti bioreaktor dengan membran (membrane bioreactor) atau integrasi antara ultrafiltrasi dan karbon aktif.
Unit Pengolahan Biogas
Unit pengolahan biogas terbagi dalam 2 proses utama yaitu proses pembentukan dan penyaluran gas serta sistem pemrosesan gas. Proses pembentukan gas dalam landfill melibatkan reaksi yang kompleks sehingga laju pembentukan gas akan bervariasi antar-landfill. Laju maksimum dicapai ketika kondisi lingkungan mencapai kondisi optimum yaitu pH mendekati netral, kelembaban cukup, serta temperatur yang moderat. Hal yang paling mengganggu adalah kehadiran oksigen yang akan menghentikan reaksi anaerobik menjadi aerobik. Pada kondisi optimum, stabilisasi sampah berlangsung antara 10-20 tahun yang ditandai dengan berhentinya pembentukan gas. Jika kurang optimum, stabilisasi bisa mencapai 30 tahun. Hal yang sulit dilakukan adalah penentuan waktu pembentukan metana dalam jumlah cukup besar. Hingga saat ini belum ada metode pasti untuk memprediksi waktu tersebut. Cara yang paling umum dilakukan adalah dengan membandingkannya dengan waktu pembentukan metana landfill yang terdekat kondisinya.
Gas yang dihasilkan dari landfill didominasi oleh metana dan karbondioksida. Kandungan metana berkisar antara 45-55% sedangkan karbon dioksida berkisar antara 40-50%. Kandungan metana yang lebih tinggi juga pernah dilaporkan. Kombinasi kedua gas bisa mencapai 99% dari semua gas. Walaupun demikian, satu persen gas sisanya harus sangat diperhatikan karena bisa bersifat korosif, beracun, ataupun berbau tak sedap. Dalam kondisi ideal, kalor jenis gas yang dihasilkan bisa mencapai 450-540 Btu/SCF.
Komposisi gas yang dihasilkan relatif konstan selama puncak pembentukan. Ketika sampah sudah memasuki masa stabilisasi, pembentukan gas mulai menurun secara asimtot. Oleh karena itu, total waktu pembentukan gas sering dinyatakan dalam bentuk waktu paruh. Selama periode penurunan ini, komposisi gas yang dihasilkan relatif tetap. Akan tetapi, laju pembentukan yang menurun ini akan berakibat pada penurunan tekanan dan rembesan udara ke dalam landfill. Oleh karena itu, besar kemungkinan terbawanya nitrogen dan oksigen karena sulit untuk mengambil gas tanpa tercampur dengan udara.
Gambar 2 Skema pengolahan sampah dengan landfill yang menghasilkan
Gambar 2 Skema pengolahan sampah dengan landfill yang menghasilkan gas
Sistem pemrosesan gas terdiri atas beberapa sumber gas dan pipa-pipa yang saling terhubung kepada pompa vakum. Pada sistem yang sederhana, pompa yang dipakai berupa blower sentrifugal.
Saat ini, pengambilan gas dilakukan dengan memasukkan pipa (well) berlubang secara vertikal ke dalam sampah kira-kira hingga ¾ kedalaman landfill. Lubang-lubang itu biasanya kecil-kecil. Lubang-lubang itu akan diisi dengan bebatuan atau kerikil untuk mencegah masuknya sampah. Lubang-lubang diletakkan di bagian bawah pipa untuk mencegah masuknya udara dari luar. Segel beton diletakkan di atas kerikil. Bagian atas diisi dengan tanah.
Plastik pipa biasanya digunakan sebagai selubung pipa sumber (well). Besi atau baja kurang disukai karena potensial terkorosi serta kecenderungan landfill yang berubah seiring dekomposisi sampah. Material plastik (polimer) yang banyak digunakan adalah polivinil klorida (PVC), polietilen (PE), dan serat kaca (fiberglass) karena lebih tahan korosi dan fleksibel.
Biogas yang dikeluarkan selanjutnya diubah menjadi listrik melalui sistem konversi termal yang melibatkan gas engine dan boiler untuk menghasilkan uap air yang akan menggerakkan turbin.

  1. Marliana, Linda, dkk. 2003. Penelitian. Produksi Biogas dari Sampah Pasar Menggunakan Bioreaktor Anaerobik. Departemen Teknik Kimia ITB
  2. Tchobanoglous, G. Et.al. 1993. Integrated Solid Waste Management. McGraw Hill, Inc
  3. http://en.wikipedia.org/wiki/Biogas

18 May 2010

Tugas Kimia Siswa Kelas X SMA N 1 Simo

 UUKK Paket 1
UUKK Paket 2
UUKK Paket 3
UUKK Paket 4

Anda ingin download file-file presentasi Kimia? Klik di sini

Daftar Siswa yang telah mengirimkan tugas kimia : 

No. Nama Kelas Nilai Tgl. Koreksi
1 Wenda Rosita X-5 A 01-06-2010
2 Marlinda Dewi X-5 A 01-06-2010
3 Zidna Taubati X-5 A 01-06-2010
4 Rhiza Hanung X-5 B+ 01-06-2010
5 Adhi Nugroho X-4 B+ 01-06-2010
6 Marlinda Dewi X-5 A 01-06-2010
7 Zulfikar
B 01-06-2010
8 Indah Dwi Hastuti X-3 A 01-06-2010
9 Emy Setyaningsih X-4 B+ 01-06-2010
10 Nurida Widowati X-3 B+ 01-06-2010
11 Nurida Widowati X-3 A 01-06-2010
12 Fradita Maharani X-3 B+ 01-06-2010
13 Retno Azizah X-6 A 01-06-2010
14 Retno Azizah X-6 A 01-06-2010
15 Retno Azizah X-6 A 01-06-2010
16 Sri Lestari X-3 B+ 01-06-2010
17 Rhikmaninditya C. X-1 A 01-06-2010
18 Rhikmaninditya C. X-1 A 01-06-2010
19 Rhikmaninditya C. X-1 A 01-06-2010
20 Rhikmaninditya C. X-1 A 01-06-2010
21 Rhikmaninditya C. X-1 A 01-06-2010
22 Hendri Eko Darmawan X-5 A 01-06-2010
23 Anis Sofiana X-5 B 01-06-2010
24 Sandy Anggur Pertiwi X-3 A 01-06-2010
25 Kunthi Nur Wulandari X-1 A 31/05/2010
26 Shahnaz Natasya X-1 B 31/05/2010
27 Anang Titis X-5 B+ 31/05/2010
28 Sri Suratmi X-5 B 31/05/2010
29 Ida Aana X-4 A 31/05/2010
30 Arian X-3 A 31/05/2010
31 Hesti S. X-1 B+ 31/05/2010
32 Rina Widiastuti X-1 A 31/05/2010
33 Rina Widiastuti X-1 B+ 31/05/2010
34 Sandy Anggur Pertiwi X-3 A 31/05/2010
35 Bayu Aji
B 31/05/2010
36 Marlinda MD X-5 A 31/05/2010
37 Mukti Bagus X-5 A 31/05/2010
38 Adhi Nugroho X-1 B+ 31/05/2010
39 Agung Nugroho X-4 B+ 31/05/2010
40 Tiara Yumafita X-3 B+ 31/05/2010
41 Ida Aana X-4 A 29-05-2005
42 Zidna Taubati X-5 B 29-05-2005
43 Maryaning D X-3 A 29-05-2005
44 Yuanita Sri Respati X-1 B+ 29-05-2005
45 Zidna Taubati X-5 B 29-05-2005
46 Yeni Isnaini X-2 B+ 29-05-2005
47 Indri Rahmawati X-1 A 29-05-2005
48 Tomi Wijanarko X-5 B+ 29-05-2005
49 Dwi Nikmah Fitriani X-5 B 29-05-2005
50 Anis Budi Ernawati X-2 A 29-05-2005
51 Dwi Nikmah Fitriani X-5 B+ 29-05-2005
52 Dwi Nikmah Fitriani X-5 A 29-05-2005
53 Agus Supriyanto X-4 A 29-05-2005
54 Indri Rahmawati X-1 A 28-05-2010
55 Hendri Eko Darmawan X-5 A 28-05-2010
56 Siti Kuswatun X-6 A 28-05-2010
57 Siti Kuswatun X-6 A 28-05-2010
58 Siti Kuswatun X-6 A 28-05-2010
59 Baron Setyo Utomo X-2 A 28-05-2010
60 Ria Ariyanti X-4 A 28-05-2010
61 Ria Ariyanti X-4 A 28-05-2010
62 Nanda Agyu X-4 A 28-05-2010
63 Zidna Taubat X-5 A 28-05-2010
64 Zidna Taubat X-5 B+ 28-05-2010
65 Zidna Taubat X-5 A 28-05-2010
66 Khoiriyah  X-2   B+ 27/05/2010
67 Alifah Budi P X-1  A 27/05/2010
68 Endah Tri Hartati X-1  A 27/05/2010
69  Endah Tri Hartati X-1  A 27/05/2010
70 Kiki Rillia X-1 A 27/05/2010
71 Marita Hardiyani X-1 A 27/05/2010
72 Endah Tri Hartati X-1 A 27/05/2010
73 Marita Tri Hartati X-1 A 27/05/2010
74 Anggita Dewi  X-1  A 26/05/2010
75 Rina Widiastuti  X-1  A 26/05/2010
76 Paradhita Z.N. X-1  A 26/05/2010
77  Paradhita Z.N X-2  A 26/05/2010
78 Tri Widayati X-6  B+
79  Ria Asih M. X-2  A
80 Umul Barokah  X-5 A
81  Riza Hanung X-5 B+
82  Rhikmaninditya X-1  A
83  Hidayatul Ch. X-6 B+
84  Rohmatul Laili X-6  B+ 
85  Marlinda Md X-5  A
86  Marlinda Md. X-5 A
87  Eny Kurniawati X-5 A
88  Dwi Nikmah F.
89  Muh. Syaifudin
90  Ari Pujiastuti X-4  B+
91  Marlinda Md. X-5  A
92  Ari Puji X-5  A
93  Retno Azizah X-5  A
94  Lirih Hutami X-6  B+
95  Atika Febri A. X-2  A
96  Esty X-5  B+
97  Ricky Anto A. X-5 B
98  Atika Febri A. X-5 B+
99  Muh Arfan X-4  B+
100  Filayati Miftah X-4 B+
101 Lia Liana X-4 B+
102  Yopie Adi Putra X-4  B+
103  Fransisca X-6  B+
104  Dwi Pradika X-5 B
105  Muh. Syarif X-4 A
106  Hendi Eko D. X-5  B+
107  Agus Supriyanto X-4  B
108  Marlinda Md. X-5 A
109 Siti Kuswatun X-6 A
110 Anang Titis X-5 A
111 Indah Nuraini X-5 A
112 Retno Azizah X-6 A 20/05/2010
113 Sri Suratmi
B+ 20/05/2010
114 Wenda Rosita X-5 A 21/05/2010
115 Muhammad Faizal Eko S. X-4 A 21/05/2010
116 Yunita Febriana X-4 B+ 21/05/2010
117 Ulfah Husna L X-6 A 24/05/2010
118 Adhil Taneda X-4 A 24/05/2010